Coordination Chemistry and Structural Rearrangements of the Me₂PCH₂AlMe₂ Ambiphilic Ligand

Katarina Paskaruk, David J. H. Emslie,* James F. Britten

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Reaction of 2 equivalents of $(Me_2PCH_2AIMe_2)_2$ with $[{RhCl(cod)}_2]$ (cod = 1,5-cyclooctadiene) afforded $[{\kappa^2 P, P-(Me_3AlCl)MeAl(CH_2PMe_2)_2}Rh(cod)]$ (1), which features a κ^2 -coordinated bis(phosphino)aluminate anion. In compound 1, an Al-Cl substituent bridges to a molecule of AlMe₃, which could be removed in vacuo to provide $[\{\kappa^2 P, P-C|MeA|(CH_2 PMe_2)_2\}Rh(cod)]$ (2). By contrast, reaction of 1 equiv. of $(Me_2 PCH_2 A|Me_2)_2$ with $[\{RhCl(cod)\}_2]$ yielded $[Rh(cod)(\mu-Cl)(Me_2PCH_2AIMe_2)]$ (3) as the major product, where the phosphine donor of an intact Me_2PCH_2AIMe_2 ligand is coordinated to rhodium and a chloride ligand bridges between Rh and Al. [Rh(cod)(μ -Cl)(Me₂PCH₂AlClMe)] (3A) and 2 were also formed as minor products. The aforementioned reactions were carried out in benzene or toluene, whereas the 1:1 reaction of $(Me_2PCH_2AIMe_2)_2$ with $[{RhCl(cod)}_2]$ in THF afforded $[{Rh(\mu-CH_2PMe_2)(cod)}_2]$ (4). Reactions of $(Me_2PCH_2AIMe_2)_2$ with iridium(I), gold(I) and platinum(II) precursors were also explored. A 1:1 reaction of (Me₂PCH₂AlMe₂)₂ with [{IrCl(cod)}₂] afforded [$\{\kappa^2 P, P-Cl_2 Al(CH_2 PMe_2)_2\}$ lr(cod)] (5) as one of two major phosphine-containing products; unlike 3, this compound features two chlorine substituents on aluminium. For comparison, the rhodium analogue of 5, [{ $\kappa^2 P$,P-Cl₂Al(CH₂PMe₂)₂Rh(cod)] (6), was also synthesized via the 1:1 reaction of {ClAl(CH₂PMe₂)₂} with [{RhCl(cod)}₂]. Reactions of (Me₂PCH₂AIMe₂)₂ with [LAuCl] (L = CO or SMe₂) or [PtCl₂(cod)] also resulted in chloride-methyl group exchange between the transition metal and aluminium. However, these reactions generated free (Me₂PCH₂AlCIMe)₂ accompanied by gold and ethane, or [PtMe2(cod)], respectively. Reaction of 1.5 equivalents of (Me2PCH2AIMe2)2 with [PtMe2(cod)] at 75 °C afforded zwitterionic [(PtMe{ μ - κ^1P : κ^2P , P-MeAl(CH₂PMe₂)₃)₂] (7) which features two tris(phosphino)aluminate anions bridging between PtMe units. Compounds 1-2, 3/3A, 4-7 and (Me₂PCH₂AlCIMe)₂ were crystallographically characterized.

Introduction

Transition metal complexes bearing ambiphilic ligands, that is ligands featuring one or more Lewis basic donor as well as a Lewis acidic acceptor, have been of great interest in recent years. These ligands are noteworthy due to the ability of the Lewis acid to interact with the metal centre, influencing the delectron count, yielding compounds with unusual coordination geometries, and modulating the amount of electron density at the metal centre. Furthermore, the pendent Lewis acid can coordinate to substrates or co-ligands, or abstract co-ligands to form coordinatively-unsaturated species.1-5 The majority of transition metal complexes featuring ambiphilic ligands contain borane Lewis acids. By comparison, alane-containing ambiphilic ligand complexes are far rarer,⁶⁻⁴² despite the increased Lewis acidity of tris(hydrocarbyl)alanes relative to tris(hydrocarbyl)boranes.43-45 Of these ligands, only three examples with a single phosphine donor have been utilized for the synthesis of transition metal complexes: $R_2P(NR')AIR'_{2}$,^{6-9,46} $Me_2PCH_2AIMe_2$,¹⁰⁻¹² and $Mes_2PC(=CHPh)AI^tBu_2$.¹³⁻¹⁵

Labinger and Miller et al. explored the reactivity of $R_2PN(R'')AIR'_2$ (primarily with R = Ph, R' = Me or Et, and R'' = ^tBu) with iron^{7,8} and manganese^{6,9} complexes bearing carbonyl and either methyl or hydride ligands, demonstrating the ability of ambiphilic ligands to promote the formation of new C-C or C-H bonds. For example, reaction of Ph₂PN(^tBu)AlEt₂ with [CpFe(CO)₂Me] afforded an iron complex containing a 5membered CMe–O–AlEt₂–N^tBu–PPh₂ ring coordinated to iron via C and O (A in Figure 1). This complex slowly isomerized to form an acyl complex featuring a 6-membered Fe-CMe=O-AlEt₂–N^tBu–PPh₂ metallacycle (B in Figure 1). Similarly, reaction of Ph₂PN(^tBu)AlR'₂ (R' = Me or Et) with [HMn(CO)₅] afforded a complex analogous to A in Figure 1, and for R = Me, this complex reacted with an additional equivalent of Ph₂PN(^tBu)AlMe₂ to afford C in Figure 1. These manganese complexes were proposed not to result from direct 1,1-insertion, given that a phosphonium salt was formed initially.

Zargarian *et al.* reported the use of the ambiphilic ligand precursor $(Me_2PCH_2AIMe_2)_2$ for the synthesis of nickel complexes.¹⁰ A mixture of $(Me_2PCH_2AIMe_2)_2$ and [(1-Me-Ind)NiMe(PPh_3)] (Ind = indenyl) was used to facilitate the catalytic oligomerization of PhSiH_3. The active species was proposed to be [(1-Me-Ind)NiMe(Me_2PCH_2AIMe_2)], and the pendant alane was suggested to play an important role in

Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada. E-mail: emslied@mcmaster.ca

⁺ Electronic Supplementary Information (ESI) available: NMR spectra and tables of crystallographic data. See DOI: 10.1039/x0xx00000x. CCDC 2184238-2184245 contain the supplementary crystallographic data for **1-7** and (Me₂PCH₂AlCIMe)₂, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

catalysis. Although the aforementioned active species was not observed, the Lewis base adduct [(1-Me-Ind)NiMe{Me₂PCH₂AIMe₂(NEt₃)}] (D in Figure 1) was spectroscopically observed upon the addition of excess NEt₃. Additionally, rhodium Me₂PCH₂AlMe₂ complexes were reported Fontaine et al.^{11,12} These complexes include bv $[Cp*RhMe_2{Me_2PCH_2AIMe_2(L)}]$ {L = DMSO (E in Figure 1) or PMe₃} and [Cp*RhMe₂(Me₂PCH₂AlMe₂)], and heating the DMSO adduct in the presence of 2 equiv. of AlMe_3 and 1 equiv. of $(Me_2PCH_2AIMe_2)_2$ afforded zwitterionic [Cp*RhMe {(Me₂PCH₂)₂AIMe₂)].¹¹

More recently, coordination of the Mes₂PC(=CHPh)Al⁴Bu₂ ligand to rhodium, palladium, gold and platinum was reported. Reactions with [{Rh(μ -Cl)(nbd)}₂] and [{Pd(μ -Cl)(allyl)}₂] afforded complexes in which a chloride ligand bridges between the transition metal and aluminium (e.g. F in Figure 1), whereas the reaction with [AuCl(THT)] (THT = tetrahydrothiophene) afforded a zwitterion in which the chloride anion has been abstracted by the alane (G in Figure 1).¹³ Complexes in which the alane is coordinated to the transition metal were accessed via reactions with [Au(C₂Ph)]_n, [Au(THT)(C₆F₅)],¹⁴ [Pd(η ³-C₃H₅)(μ -Cl)}₂],^{13,14} or [Pt(C₂H₄)(PPh₃)₂], and the platinum complex [{Mes₂PC(=CHPh)Al⁴Bu₂}Pt(PPh₃)] (H in Figure 1) was shown to engage in cooperative reactivity resulting in CO₂ (I in Figure 1) and CS₂ fixation, and H₂ and PhC(O)NH₂ activation.¹⁵

As research into small alane-containing ambiphilic ligands is in its infancy, we sought to further research the coordination of Me₂PCH₂AlMe₂ to late transition metal complexes, with a focus on probing the ability of this flexible and sterically unencumbered ligand to interact with co-ligands (e.g. Cl⁻ or Me⁻), and the circumstances under which the ligand engages in reactivity at the aluminium–alkyl linkages.

Results and discussion

Reaction of 2 equivalents of $(Me_2PCH_2AIMe_2)_2^{47}$ with $[{Rh(\mu-Cl)(cod)}_2]$ (cod = 1,5-cyclooctadiene) in benzene or toluene at room temperature afforded $[{\kappa}^{2}P,P-(Me_3AICl)MeAI(CH_2PMe_2)_2]Rh(cod)]$ (1; Scheme 1), with a ³¹P{¹H} NMR chemical shift of -5.83 ppm (¹J_{103Rh-31P} = 138 Hz). This complex does not contain two Me_2PCH_2AIMe_2 ligands. Rather, it contains a bidentate bis(phosphino)aluminate ligand which is κ^2 -coordinated to rhodium via two phosphine arms; this bidentate ligand can be considered to be comprised of a CIMeAI(CH_2PMe_2)_2 anion in which the chloride substituent bridges to a molecule of AIMe_3.

An X-ray crystal structure of **1** (Figure 2) shows the expected square planar geometry at rhodium (angles in the square plane range from 84.85° to 92.81°), with Rh–P distances of 2.3283(7) and 2.3195(6) Å, and Rh–C distances ranging from 2.212(2) to 2.246(2) Å. The Al(1)–Cl(1)–Al(2) angle is 113.85(3)°, and both aluminium centres adopt a slightly distorted tetrahedral geometry. The Al(1)–Cl and Al(2)–Cl distances are 2.3038(9) and 2.416(1) Å, respectively, indicating that chloride is more tightly bound by the aluminium centre of the ligand backbone {Al(1)}, although both distances are elongated compared the sum of the covalent radii (2.23 Å).⁴⁸ Additionally, Al(1) is more pyramidalized, with the sum of the C–Al–C bond angles equal to 340.3(2)°, compared to 348.2(3)° for Al(2).

Scheme 1. Reactivity of (Me₂PCH₂AlMe₂)₂ with [{RhCl(cod)}₂].

Figure 2. X-ray crystal structures of **1** (left) and **2** (right). Ellipsoids are set at 50% and hydrogen atoms are omitted for clarity. In **2**, the Cl and CH₃ groups on Al(1) are disordered (80:20) over two positions, and only the major one of these is shown.

Journal Name

Solid **1** loses AIMe₃ slowly under vacuum at room temperature, or more rapidly at elevated temperature, affording $[{\kappa^2 P, P-CIMeAI(CH_2PMe_2)_2}Rh(cod)]$ (**2**; Scheme 1). The structure of **2** was confirmed by NMR spectroscopy and X-ray crystallography (Figure 2), and is analogous to that of **1**, although the AI–CI distance in **2** is considerably shorter, at 2.199(1) Å. The Rh–P distances are 2.3249(5) and 2.3348(5) Å for P(1) and P(2), respectively, and the Rh–C distances range from 2.209(2) to 2.250(2) Å. Compared with the structure of **1**, aluminium is more pyramidalized, with the sum of the C–AI–C bond angles equal to 332.5(4)°.

Room temperature ¹H and ¹³C NMR spectra of **1** in CD₂Cl₂ are indicative of apparent C_{2v} symmetry, despite approximate C_s symmetry in the solid state. For example, the PMe₂ and PCH₂Al groups each gave rise to just one ¹H or ¹³C NMR signal. Furthermore, only a single peak was observed for the methyl substituents on the two inequivalent aluminium centres. By contrast, low temperature ¹H and ¹³C NMR spectra revealed separate AIMe and AIMe₃ signals, as well as separation of the PMe and PCH₂Al ¹H NMR signals into two singlets and two doublets, respectively. The apparent C_{2v} symmetry at room temperature is presumably due to a fluxional process involving initial AlMe $_3$ or ClAlMe $_3^-$ dissociation. For example, (a) reversible AIMe₃ dissociation followed by methyl group abstraction afford undetected to $[{\kappa^2 P, P-CIAI(CH_2 PMe_2)_2}Rh(cod)][AIMe_4], or (b) reversible$ AlMe₃Cl⁻ dissociation followed by transfer of a methyl group back to the alane in the ligand backbone, affording undetected $[{\kappa^2 P, P-Me_2Al(CH_2PMe_2)_2}Rh(cod)]$ and Me₂AlCl. In keeping with either of these mechanisms, room temperature ¹H NMR spectra of **2** show the expected C_s symmetry, but addition of a sub-stoichiometric amount (<0.1 equiv.) of AlMe₃ resulted in a switch to apparent C_{2v} symmetry.

The bidentate bis(phosphino)aluminate ligands in **1** and **2** are relatives of the Me₂Al(CH₂PMe₂)₂⁻ ligand in Fontaine's [Cp*{ κ^2P,P -Me₂Al(CH₂PMe₂)₂}RhMe]. These aluminate ligands are heavy analogues of Peters' bis(phosphino)borate ligands, R'₂B(CH₂PR₂)₂^{-,49} and to our knowledge, **1** and **2** are only the second and third structurally characterized examples of transition metal R'₂Al(CH₂PR₂)₂⁻ complexes.

In contrast to the 2:1 reaction of $(Me_2PCH_2AIMe_2)_2$ with $[{Rh(\mu-Cl)(cod)}_2]$, the 1:1 reaction (in benzene or toluene) afforded an orange-brown solution with some suspended solid. Three products were observed in the ³¹P{¹H} NMR spectrum of the reaction mixture, with chemical shifts at 7.12 ppm (major; >80%), and 4.56 and -5.89 ppm (minor), in all cases with similar ¹J_{Rh,P} coupling constants of 133.6-138.4 Hz. Based on the ¹H, ³¹C and ³¹P NMR data, the latter minor product (³¹P = -5.89 ppm) is assigned to compound **2**.

Slow evaporation of the reaction solution afforded a dark precipitate as well as golden-yellow crystals which contained a 68:32 mixture of [Rh(cod)(μ -Cl)(Me₂PCH₂AlMe₂)] (**3**) and [Rh(cod)(μ -Cl)(Me₂PCH₂AlCIMe)] (**3A**); the unit cell contains two independent molecules, one of which is not disordered and contains only compound **3** (Figure 3), and one of which is disordered between **3** and **3A** in an 36:64 ratio. Compound **3** contains an intact Me₂PCH₂AlMe₂ ligand, with a chloride co-

ARTICLE

ligand bridging between Rh and Al. The non-disordered molecule of **3** features Rh–P and Rh–Cl distances of 2.2967(3) and 2.4176(3) Å, respectively, and Rh–C distances ranging from 2.104(1) to 2.253(1) Å. The Al–Cl bond distance is 2.3427(4) Å, which is similar to that in [Rh(nbd)(μ -Cl)(Mes₂PC(=CHPh)Al^tBu₂)] (nbd = 2,5-norbornadiene),¹³ and the sum of the C–Al–C bond angles is 346.70(9)°. Dissolution of these crystals afforded two ³¹P NMR signals at 7.12 and 4.56 ppm in an approximate 2:1 ratio, indicating that **3** is the major product in the 1:1 reaction of (Me₂PCH₂AlMe₂)₂ with [{Rh(μ -Cl)(cod)}₂], and **3A** is the minor product with a ³¹P NMR chemical shift of 4.56 ppm (Scheme 1).

The reaction between $(Me_2PCH_2AIMe_2)_2$ and $[{Rh(\mu-Cl)(cod)}_2]$ is solvent-dependent, and afforded $[{Rh(\mu-CH_2PMe_2)(cod)}_2]$ (4) {accompanied by AIMe_2Cl(THF)} when the reaction was carried out with 1:1 stoichiometry in THF (Scheme 2). This process likely involves initial formation of compound **3**, and consistent with this hypothesis, **3** (as the major product in the mixture formed from the 1:1 reaction of $(Me_2PCH_2AIMe_2)_2$ with $[{Rh(\mu-Cl)(cod)}_2]$ in benzene; *vide supra*) rapidly converted to **4** upon dissolution in THF.

Figure 3. X-ray structure of **3** from crystals containing [Rh(cod)(µ-Cl)(Me₂PCH₂AIMe₂)] (**3**) and [Rh(cod)(µ-Cl)(Me₂PCH₂AICIMe)] (**3A**) in a 68:32 ratio. The unit cell contains two independent molecules; one is a non-disordered molecule of **3**, whereas the other is disordered between **3** and **3A** in a 36:64 ratio. This figure shows only the non-disordered molecule of **3**. Ellipsoids are set at 50% and hydrogen atoms have been omitted for clarity.

Scheme 2. Formation of 4 in THF.

Figure 4. X-ray crystal structure of 4. Ellipsoids are set to 50% probability. Hydrogen atoms have been omitted for clarity.

Red X-ray quality crystals of **4** were obtained by layering the reaction mixture with pentane and cooling to -30 °C, and revealed two bridging CH₂PMe₂⁻ anions, with each rhodium centre coordinating to the carbon atom of one CH₂PMe₂⁻ ligand

and the phosphorus atom of the other (Figure 4). This structure is similar to that observed for the rhodium(III) complex [$Cp*RhMe(\mu-CH_2PMe_2)_2$].¹¹ For example, both adopt a twistboat conformation of the 6-membered Rh₂C₂P₂ ring, and the Rh–C distances are similar (2.108(1) Å in **4**, compared with 2.101(7) and 2.095(7) Å in the rhodium(III) complex).

To explore the generality of the reactivity observed between (Me₂PCH₂AlMe₂)₂ and [{RhCl(cod)}₂] in arene solvents, analogous reactions were carried out using $[{IrCl(cod)}_2]$. In the 1:1 reaction, two phosphorus-containing products were formed in an approximate 1:1 ratio, with ³¹P NMR signals at -13.08 and -48.10 ppm. Attempts to isolate and identify the product giving rise to the lower frequency ³¹P NMR signal were unsuccessful. However, the compound with a ³¹P NMR signal at -13.08 ppm was isolated from a 2:1 mixture of $[{IrCl(cod)}_2]$ and (Me₂PCH₂AlMe₂)₂, recrystallized from 1,2difluorobenzene/hexanes, and was identified by X-ray diffraction as $[{\kappa^2 P, P-Cl_2 Al(CH_2 PMe_2)_2} | r(cod)]$ (5; Scheme 3). The new bis(phosphino)aluminate ligand in 5 is related to that in compound 2, except that aluminium has two chlorine substituents. The rhodium analogue of 5, $[{\kappa^2 P, P}-$ Cl₂Al(CH₂PMe₂)₂Rh(cod)] (6), was also synthesized via the 1:1 reaction of ${CIAI(CH_2PMe_2)_2}_2^{47}$ with $[{RhCI(cod)}_2]$ (Scheme 3). The solid state structures of 5 and 6 (Figure 5) are analogous to that of 2. The M–C distances are 2.225(2) and 2.196(2) Å in 5, and 2.2546(7) and 2.2190(7) Å in 6, and the M-P and M-Cl distances are 2.3208(4) and 2.1789(6) in 5, and 2.3175(2) and 2.1829(3) in 6.

Scheme 3. Formation of complexes 5 and 6, bearing the $Cl_2Al(CH_2PMe_2)_2^{-}$ ligand.

To extend the reactivity of (Me₂PCH₂AlMe₂)₂ beyond group 9 metals, a solution of (Me₂PCH₂AIMe₂)₂ (0.5 equiv.) was added to [CIAu(CO)] (Scheme 4), affording an ink-blue mixture within seconds, indicative of gold colloid formation. This was followed by precipitation of a black powder and deposition of a thin gold mirror on the walls of the reaction flask. Powder X-ray diffraction of the precipitated solid confirmed its identity as elemental gold. The remaining clear, colourless reaction solution was analysed by ¹H and ³¹P NMR spectroscopy and shown to contain ethane as well as (Me₂PCH₂AlClMe)₂ as an approx. 2:1 mixture of diastereomers; crystals of the meso diastereomer of (Me₂PCH₂AlClMe)₂ were obtained by slow evaporation of the supernatant, and the structure was confirmed by X-ray diffraction (Figure 6). These products are indicative of exchange of chloride and methyl groups between gold and aluminium, to generate an unstable gold methyl species which undergoes ethane reductive elimination⁵⁰⁻⁵² to deposit elemental gold. This reactivity contrasts that of Mes₂PC(=CHPh)Al^tBu₂,¹³ ${(o-Ph_2P)C_6H_4}_2AICI^{16}$ and {(o-Ph₂P)C₆H₄}₃Al¹⁷ with gold(I) chloride complexes, which resulted in chloride abstraction to afford stable zwitterionic gold(I) products.

Figure 6. X-ray crystal structure of the *meso* diastereomer of $(Me_2PCH_2AlCIMe)_2$. Ellipsoids are set at 50% probability. Hydrogen atoms have been omitted for clarity.

The reactivity of $(Me_2PCH_2AIMe_2)_2$ with platinum precursors containing either chloride or methyl ligands was also explored, in light of the varied reactivity observed with late transition metal chloride complexes, and to probe the behaviour of the $Me_2PCH_2AIMe_2$ ligand in the presence of methyl co-ligands. When 1 equiv. of $(Me_2PCH_2AIMe_2)_2$ was added to a solution of $[PtCl_2(cod)]$, chlorine-methyl exchange between platinum and aluminium was again observed, affording $(Me_2PCH_2AICIMe)_2$ and $[PtMe_2(cod)]$ (Scheme 4). By contrast, no reaction was observed between $(Me_2PCH_2AIMe_2)_2$ (0.5 or 1.5 equiv.) and $[PtMe_2(cod)]$ at room temperature. However, when the mixture was heated to 75 °C, a new phosphine-containing product was generated over the course of 20 hours (in higher yield in the 1.5:1 reaction), accompanied by the formation of approx. 4 equiv. of free AIMe₃ (Scheme 4).

Figure 6. X-ray crystal structure of 7. Ellipsoids are set at 50%. Hydrogen atoms have been omitted for clarity.

Figure 7. Experimental and simulated ³¹P{¹H} NMR spectra of **7.** In the simulated spectrum, coupling to ¹⁹⁵Pt was not included. The *, † and ‡ symbols correspond to the three inequivalent phosphine donors attached to each platinum centre; * is *trans* to a methyl ligand, whereas † and ‡ are *trans* to one another. In the experimental spectrum, dashed lines highlight the position of ¹⁹⁵Pt-satellites relative to the central peak.

The new product was isolated as clear colourless crystals by slow evaporation of a benzene solution, and was identified by X-ray crystallography (Figure 6) as zwitterionic [(PtMe{ μ - $\kappa^1P:\kappa^2P,P$ -MeAl(CH₂PMe₂)₃)₂] (7). Compound 7 features two tridentate tris(phosphino)aluminate anions bridging between square planar platinum centres, with each ligand κ^2 -coordinated to one platinum, and κ^1 -coordinated to the other. Each platinum centre also retains one methyl ligand. The Pt–C distance is 2.115(1) Å, and the Pt–P distances are 2.3144(3) and

2.3211 (3) Å for the phosphines *trans* to one another, and 2.3297(3) Å for the phosphine *trans* to the methyl group. The geometry around the platinum centre is square planar, with P–Pt–P angles of 95.24(1)° and 92.98(1)°, and smaller C–Pt–P angles of 87.05(4)° and 84.91(4)°.

The ³¹P{¹H} NMR spectrum of **7** features three signals due to the three inequivalent phosphine donors (each with ¹⁹⁵Pt satelites; ¹J_{P,Pt} is ~2400 Hz for the phosphines *trans* to one another, and 1830 Hz for the phosphine *trans* to the methyl group), and is complicated by second order effects. Thus, the ³¹P-³¹P coupling constants (and ³¹P NMR shifts) were found via simulation; the *cis* ²J_{P-P} couplings are 22 and 23 Hz, whereas the *trans* ²J_{P-P} coupling is 398 Hz (Figure 7). To the best of our knowledge, compound **7** is the first example of a transition metal tris(phosphino)aluminate {R'Al(CH₂PR₂)₃-} complex, and it is interesting that the formation of this ligand was favoured, even when an excess of [PtMe₂(cod)] was present (e.g. in the reaction between 0.5 equiv. of (Me₂PCH₂AlMe₂)₂ and [PtMe₂(cod)]).

Summary and Conclusions

Reactions between (Me₂PCH₂AlMe₂)₂ and late transition metal complexes led to five distinct outcomes:

- (1) Complexation of an intact $Me_2PCH_2AIMe_2$ ambiphilic ligand; one equiv. of $(Me_2PCH_2AIMe_2)_2$ reacted with $[{RhCl(cod)}_2]$ in arene solvents to afford $[Rh(cod)(\mu-Cl)(Me_2PCH_2AIMe_2)]$ (3) as the major product.
- (2) In-situ generation of a bis(phosphino)aluminate ligand. This outcome was observed in the 2:1 reaction between $(Me_2PCH_2AIMe_2)_2$ and $[{RhCl(cod)}_2]$, and the 1:1 and 1:2 reactions between $(Me_2PCH_2AIMe_2)_2$ and $[{IrCl(cod)}_2]$, generating $[{\kappa^2P,P-XMeAl(CH_2PMe_2)_2}Rh(cod)]$ {X = ClAIMe₃ (1) or Cl (2)} or $[{\kappa^2P,P-Cl_2Al(CH_2PMe_2)_2}Ir(cod)]$ (5), respectively.
- (3) Formation of a dimethylphosphinomethyl complex; reactions between $(Me_2PCH_2AIMe_2)_2$ and $[{RhCl(cod)}_2]$ in THF afforded $[{Rh(\mu-CH_2PMe_2)(cod)}_2]$ (4). Compound **3** also rapidly converted to **4** in THF.
- (4) Chloride-methyl exchange to afford free (Me₂PCH₂AlClMe)₂; reactions of (Me₂PCH₂AlMe₂)₂ with [(CO)AuCl] or [PtCl₂(COD)] provided free (Me₂PCH₂AlClMe)₂ accompanied by gold and ethane, or [PtMe₂(COD)], respectively.
- (5) In-situ generation of a tris(phosphino)aluminate ligand; reaction of (Me₂PCH₂AIMe₂)₂ with [PtMe₂(cod)] yielded [(PtMe{μ-κ¹P:κ²P,P-MeAI(CH₂PMe₂)₃)₂] (7).

These reactions highlight the ability of Me₂PCH₂AlMe₂ to serve as an ambiphilic ligand, but also the propensity of this ligand to engage in reactivity involving the Al–C_{alkyl} bonds,^{11,53} and the sensitivity of this reactivity to the identity of the transition metal, as well as the co-ligands (Cl vs Me), reaction stoichiometry, and solvent (arene solvents vs THF). However, it is important to note that ambiphilic ligands featuring Al–C_{alkyl} linkages do not always engage in reactivity at the Al–C bonds. For example, the Al–C linkages in Ph₂P(N^tBu)AlR₂ (R = Me or Et)⁶⁻

⁹ and Mes₂PC(CHPh)Al^tBu₂¹³⁻¹⁵ remained in intact in various transition metal complexes (*vide supra*). Additionally, a tridentate PPAI ligand (FcPPAI) containing an ArAlMe₂ moiety was used to form [{Pt(FcPPAI)}₂], [Pt(L)(FcPPAI)] [L= norbornene, C₂H₄, C₂Ph₂, CO] and [PtH₂(FcPPAI)], and in all cases, the FcPPAI ligand remained intact.²¹

Compounds **1**, **2** and **5** are rare examples of bis(phosphino)aluminate $\{R'_2Al(CH_2PR_2)_2^-\}$ complexes, and to the best of our knowledge, compound **7** is the first example of a transition metal tris(phosphino)aluminate $\{R'Al(CH_2PR_2)_3^-\}$ complex. It is remarkable that this ligand was assembled selectively via the reaction of $(Me_2PCH_2AlMe_2)_2$ with [PtMe₂(cod)], especially considering that the lithium salt of the MeAl(CH_2PMe_2)_3⁻ anion has been reported to undergo rapid ligand redistribution to form $Me_2Al(CH_2PMe_2)_2^-$ and $Al(CH_2PMe_2)_4^{-.54}$

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

D. J. H. E. thanks NSERC of Canada for a Discovery Grant.

Experimental

General Details: Experiments were carried out in an argonfilled MBraun UniLab glove box or on a double manifold high vacuum line using standard techniques. The metal complexes $[{RhCl(cod)}_2]$ and $[{IrCl(cod)}_2]$ were purchased from Strem Chemicals. [PtMe₂(cod)]⁵⁵ was prepared via literature procedure. [AuCl(CO)] and [PtCl₂(cod)] were purchased from Strem Chemicals. The ligand precursors (Me₂PCH₂AlMe₂)₂ and $\{(Me_2PCH_2)_2AICI\}_2$ were prepared via reactions of Me_2AICI or AlCl₃ with LiCH₂PMe₂.⁴⁷ Benzene, hexanes, pentane, tetrahydrofuran (THF), diethyl ether (Et₂O) were purchased from Sigma Aldrich, dried over sodium/benzophenone, and distilled under nitrogen. Toluene was purchased from Sigma Aldrich, dried over sodium metal and distilled. Anhydrous dichloromethane (DCM) was purchased from Sigma Aldrich, dried over molecular sieves (4 Å), and distilled. Deuterated solvents were purchased from Cambridge Isotope Laboratories; C₆D₆ (99.5%) was dried over sodium/benzophenone, distilled prior to use, and stored under argon. CD₂Cl₂ (99.8%) was dried over molecular sieves (4 Å), distilled prior to use, and stored under argon.

NMR spectroscopy (¹H, ¹³C{¹H}, ³¹P{¹H}, COSY, HSQC, HMBC, NOESY) was performed on Bruker AV-500 and AV-600 spectrometers. Spectra were obtained at 298 K unless otherwise indicated. All ¹H NMR spectra were referenced relative to SiMe₄ through a resonance of the protio impurity of the solvent used: C₆D₆ (δ 7.16 ppm), CD₂Cl₂ (δ 5.32 ppm) and d⁸-toluene (δ 2.08 ppm, 6.97 ppm, 7.01 ppm, and 7.09 ppm). All ¹³C NMR spectra were referenced relative to SiMe₄ through a resonance of the ¹³C in the solvents: C₆D₆ (δ 128.06 ppm), CD₂Cl₂

(δ 54.00 ppm) and d⁸-toluene (δ 20.43, 125.13, 127.96, 128.87, and 137.48 ppm). The ³¹P NMR spectra were referenced using an external standard of 85% H₃PO₄ in D₂O (0.0 ppm). Relative concentrations of species were determined by integration of ¹H NMR spectra, unless otherwise indicated. The ³¹P{¹H} NMR spectrum of **7** was simulated using the DAISY program in TopSpin 4.0.

Single-crystal X-ray crystallographic analyses were performed at 100 K (unless otherwise stated) on crystals coated in Paratone oil and mounted on a SMART APEX II diffractometer with a 3 kW sealed-tube Mo generator and SMART6000 CCD detector in the McMaster Analytical X-Ray (MAX) Diffraction Facility. Raw data was processed using XPREP (as part of the APEX v2.2.0 software), and solved by either direct (SHELXS-97)⁵⁶ or intrinsic (SHELXT)⁵⁷ methods. Structures were completed by difference Fourier synthesis and refined with full-matrix leastsquares procedures based on F^2 . In all cases, non-hydrogen atoms were refined anisotropically and hydrogen atoms were generated in ideal positions and then updated with each cycle of refinement, which was performed with SHELXL⁵⁸ in Olex2.⁵⁹

Combustion elemental analyses were performed by Midwest Micro-labs in Indianapolis, the Analest facility at the University of Toronto, or the University of Calgary.

[{k²P,P-(Me₃AlCl)MeAl(CH₂PMe₂)₂}Rh(cod)] (1): A solution of (Me₂PCH₂AlMe₂)₂ (53.4 mg, 0.203 mmol) in 1 mL of benzene was added to [{RhCl(cod)}2] (49.9 mg, 0.101 mmol) in 2 mL of benzene. The deep red solution was stirred at 25°C for 3 hours. NMR spectroscopy indicated a quantitative conversion to the product. The deep burgundy solution was evaporated to dryness in vacuo, and the resulting deep red solid was dried in vacuo for approx. 15 minutes. The product was then recrystallized from a concentrated solution of DCM at -30°C to obtain clear, red X-ray quality crystals of 1, which were dried for 10 minutes in vacuo. The recrystallized yield was 53.1 mg (51 %). Compound 1 slowly loses AlMe₃ in vacuo at room temperature (~10% after 10 minutes; ~50% after 1h), so the AlMe₃ signal for the dried solid integrated to ~90% of the expected value, and a satisfactory elemental analysis was not obtained. ¹H NMR (600 MHz, 298K, CD₂Cl₂) δ: 4.74 (s, 4H, CH (cod)), 2.29 (m, 8H, CH2 (cod)), 1.30 (m, 12H, PMe2), 0.36 (d, 4H, ²J_{P-H} 10.2 Hz, PCH₂Al), -0.74 (bs, 12H, AlMe & ClAlMe₃)). ¹³C{¹H} NMR (150.9 MHz, 298K, CD₂Cl₂) δ: 93.7 (m, CH (cod)), 31.0 (s, CH₂ (cod)), 18.0 (t, ¹J_{P-C} 13 Hz, PMe₂), 11.9 (bs, PCH₂Al), -5.9 (bs, AlMe & AlMe₃). ³¹P{¹H} NMR (242.9 MHz, 298K, CD₂Cl₂) δ: – 6.40 (d, ¹J_{Rh-P} 140.9 Hz).

[$\{\kappa^2 P, P$ -CIMeAI(CH₂PMe₂)₂ $\}$ Rh(cod)] (2): Compound 2 was obtained in a quantitative yield after heating solid [$\{\kappa^2 P, P$ -(Me₃AICI)MeAI(CH₂PMe₂)₂ $\}$ Rh(COD)] (1) under vacuum at 90 °C for 3 hours. C₁₅H₃₁AICIP₂Rh (438.70 g mol⁻¹): calcd. C 41.07 %, H 7.12 %; found C 41.21 %, H 7.30 %. ¹H NMR (600 MHz, 298K, C₆D₆) δ: 4.32 (bs, 2H, CH (cod)), 4.22 (bs, 2H, CH (cod)), 1.7-1.9 (m, 8H, CH₂ (cod)), 1.03 (m, 6H, PMe₂), 0.89 (m, 6H, PMe₂), 0.55 (t, 2H, ²J_{P-H} 12 Hz, PCH₂AI), 0.31 (t, 2H, ²J_{P-H} 12 Hz, PCH₂AI), -0.02 (s, 3H, AIMe). ¹³C[¹H} NMR (125.8 MHz, 298K, C₆D₆) δ: 91.76 (d, ¹J_{Rh-C} 75 Hz, CH (cod)), 30.74 (s, CH₂ (cod)), 1.7-98 (m, PMe₂), 17.37 (m, PMe₂), 12.46 (bs, PCH₂AI), -4.58 (bs,

Al*Me*). ³¹P{¹H} NMR (242.93 MHz, 298K, C₆D₆) δ : -5.80 (d, ¹J_{Rh-} _P = 139 Hz, *P*Me₂).

[Rh(cod)(µ-Cl)(Me₂PCH₂AlMe₂)] (3) and [Rh(cod)(µ-CI)(Me₂PCH₂AICIMe)] (3A): A solution of (Me₂PCH₂AIMe₂)₂ (10.0 mg, 0.0379 mmol) in 0.3 mL of C_6D_6 was added to [{RhCl(cod)}2] (18.7 mg, 0.0379 mmol) in 0.3 mL of C₆D₆. The reaction mixture became orange-brown and cloudy within seconds. NMR spectroscopy indicated that the major species in solution was 3 (82.5%), accompanied by 6.0% of 3A, and 11.5% of 2. The solution was decanted, and slow evaporation afforded golden-yellow crystals which were manually separated from a dark brown precipitate. X-ray diffraction indicated that the crystals contain a mixture of 3 (68%) and 3A (32%). NMR data for 3: ¹H NMR (500 MHz, 298K, C₆D₆) δ: 5.11 (m, 2H, CH (cod)), 3.20 (m, 2H, CH (cod)), 1.90 (m, 4H, CH2 (cod)), 1.51 (m, 4H, CH2 (cod)), 0.78 (d, 6H, ²J_{P-H} = 9.4 Hz, PMe₂), 0.31 (d, 2H, ²J_{P-H} 15 Hz, PCH₂Al), -0.05 (bs, 6H AlMe₂). ¹³C{¹H} NMR (125.7 MHz, 298K, **C**₆**D**₆**)** δ: 103.82 (m, CH (cod)), 68.81 (d, ²J_{P-C} 15 Hz, CH (cod)), 33.23 (d, ³J_{P-C} 3 Hz, CH₂ (cod)), 28.16 (d, ³J_{P-C} 2 Hz, CH₂ (cod)), 15.50 (d, PMe, ¹J_{P-C} 26 Hz), 15.0 (bs, PCH₂Al), -5.45 (bs, AlMe). ³¹P{¹H} NMR (202.5 MHz, 298K, C₆D₆) δ: 7.14 (d, ¹J_{Rh-P} 136.0 Hz, PMe₂). NMR data for 3A: ¹H NMR (500 MHz, 298K, C₆D₆) δ: 5.00 (m, 2H, CH (cod)), 3.14 (m, 2H, CH (cod)), 1.90 (m, 4H, CH₂ (cod)), 1.51 (m, 4H, CH₂ (cod)), 0.75 (d, 6H, ²J_{P-H} = 9.4 Hz, PMe₂), 0.33 (d, 2H, ²J_{P-H} 15 Hz, PCH₂Al), 0.05 (bs, 3H AlMe). ¹³C{¹H} NMR (125.7 MHz, 298K, C₆D₆) δ: 104.35 (m, CH (cod)), 69.37 (d, ²J_{P-C} 15 Hz, CH (cod)), 33.08 (m, CH2 (cod)), 28.02 (bs, CH2 (cod)), 15.05 (d, ¹J_{P-C} 26 Hz, PMe), 13.5 (located from 2D NMR spectra, PCH₂Al), -5.45 (bs, AlMe). ³¹P{¹H} NMR (202.5 MHz, 298K, C₆D₆) **δ:** 4.59 (d, ¹*J*_{Rh-P} 133.6 Hz, *P*Me₂).

[{Rh(μ -CH₂PMe₂)(cod)}₂] (4): A solution of (Me₂PCH₂AlMe₂)₂ (20.3 mg, 0.0767 mmol) in 1 mL of THF was added to [{RhCl(cod)}₂] (37.8 mg, 0.0767 mmol) in 2 mL of THF. The bright red solution was stirred at 25°C for 1 hour. The solution was layered with 1 mL of pentane, and cooled to -30°C for 12 hours to obtain bright red x-ray quality crystals of 4. The recrystallized yield was 22.2 mg (50.6%). C₂₂H₄₀P₂Rh₂ (572.32 g mol⁻¹): calc. C 46.17 %, H 7.04 %; found C 46.78 %, H 6.70%. ¹H NMR (500 MHz, 298K, C₆D₆) δ : 4.66 (s, 4H, CH (cod)), 4.01 (s, 4H, CH (cod)), 2.18 (m, 8H, CH₂ (cod)), 2.00 (m, 8H, CH₂ (cod)), 1.27 (dd, 12H, ²J_{P-H} 7.3 Hz, ³J_{Rh-H} 1.0 Hz PMe), 0.92 (m, 4H, PCH₂). ¹³C{¹H} NMR (125.8 MHz, 298K, C₆D₆) δ : 92.17 (m, CH (cod)), 78.54 (d, ²J_{P-C} 9 Hz, CH (cod)), 32.56 (s, CH₂ (cod)), 31.28 (s, CH₂ (cod)), 19.90 (d, ¹J_{P-C} 19 Hz, PMe), 18.06 (d, ¹J_{P-C} 28 Hz, PCH₂). ³¹P{¹H} NMR (202.5 MHz, 298K, C₆D₆) δ : -6.69 (dt, ¹J_{Rh-P} 154.3 Hz, PMe₂).

[$\{\kappa^2 P, P-Cl_2 Al(CH_2 PMe_2)_2\}$ Ir(cod)] (5): A solution of $(Me_2 PCH_2 AlMe_2)_2$ (15.0 mg, 0.0567 mmol) in 1 mL of toluene was added to [$\{IrCl(cod)\}_2$] (77.7 mg, 0.113 mmol) in 2 mL of toluene. The deep red solution was stirred at 25°C for 3 hours. The deep red solution was decanted from a dark burgundy oil, and the solvent was removed in vacuo, leaving behind a solid. The product was then recrystallized from a concentrated solution of 1,2-difluorobenzene layered with hexanes (1:1) at -30°C to obtain clear, burgundy X-ray quality crystals of **5**. The recrystallized yield was 12.5 mg (40.1%)). $C_{14}H_{28}AlCl_2P_2Ir$ (548.43 g mol⁻¹): calcd. C 30.66 %, H 5.15 %; found C 30.92 %, H 4.83 %. ¹H NMR (500 MHz, 298K, C₆D₆) δ : 3.76 (m, 4H, CH (cod)), 1.70 (m, 4H, CH₂ (cod)), 1.49 (m, 4H, CH₂ (cod)), 0.95 (d, 12H, ${}^{2}J_{P-H}$ 9.0 Hz, PMe₂), 0.75 (d, 12H, ${}^{2}J_{P-H}$ 13.0 Hz, PCH₂Al). ¹³C{¹H} NMR (125.8 MHz, 298K, C₆D₆) δ : 79.81 (t, ${}^{2}J_{P-C}$ = 6.3 Hz, CH (cod)), 31.59 (s, CH₂ (cod)), 16.81 (m, PMe), 13.95 (located from 2D NMR spectra, PCH₂Al). ³¹P{¹H} NMR (202.5 MHz, 298K, C₆D₆) δ : -13.08 (s).

 $[\{\kappa^2 P, P-Cl_2 Al(CH_2 PMe_2)_2\} Rh(cod)]$ (6): A solution of {(Me₂PCH₂)₂AlCl}₂ (19.3 mg, 0.091 mmol) in 1 mL of benzene was added to [{RhCl(cod)}2] (22.2 mg, 0.045 mmol) in 2 mL of benzene, and the resulting mixture was stirred at room temperature for 1 h. NMR spectroscopy indicated the product was formed in a qualitative yield. The resulting vibrant orange solution was left at room temperature for 12 hours, at which point orange crystals of 6 formed. The mother liquor was decanted and the crystals were dried in vacuo. The recrystallized yield was 23.1 mg (55 %). C14H28AlCl2P2Rh (459.12 g mol⁻¹): calcd. C 36.63 %, H 6.15 %; found C 36.88 %, H 6.18 %. ¹H NMR (500 MHz, 298K, CD₂Cl₂) δ: 4.78 (s, 4H, CH (cod)), 2.32 (m, 8H, CH2 (cod)), 1.38 (d, 12H, ²J_{P-H} 7.5 Hz, PMe), 0.55 (d, 4H, ²J_{P-H} 10.2 Hz, PCH₂Al). ¹³C{1H} NMR (125.8 MHz, 298K, CD₂Cl₂) δ: 93.97 (m, CH (cod)), 31.19 (s, CH₂ (cod)), 18.01 (dd, ¹J_{P-C} = 11.3, 13.8 Hz, PMe₂), 13.60 (bs, PCH₂Al). ³¹P{1H} NMR (202.5 MHz, 298K, CD₂Cl₂) δ: -6.60 (d, ¹J_{Rh-P} 139.7 Hz, PMe₂).

[(PtMe{μ-κ¹P:κ²P,P-MeAl(CH₂PMe₂)₃))₂] (7): A solution of (Me₂PCH₂AlMe₂)₂ (111.2 mg, 0.4207 mmol) in 2 mL of toluene was added to [PtMe₂(cod)] (93.5 mg, 0.2805 mmol) in 2 mL of toluene. The clear and colorless solution was stirred at 75°C for 12 hours. The solvent was evacuated from the pale beige solution, leaving behind a pale beige solid. Slow evaporation of a benzene solution at 25°C afforded clear, colourless X-ray quality crystals of 7 (112.5 mg; 42 % yield). C22H60Al2P6Pt2 (954.69 g mol⁻¹): calcd. C 27.68, H 6.33%; found C 27.52, H 6.09%. ¹H NMR (600 MHz, 298K, CD₂Cl₂) δ: 1.60 (q, 6H, 2JP-H 8 Hz, PMe2), 1.42 (m, 24H, PMe₂), 1.20 (q, 6H, ²J_{P-H} 10 Hz, PMe₂), 0.95 (m, 2H, PCH₂Al), 0.53 (m, 4H, PCH₂Al), 0.07-0.27 (m, 6H, PCH₂Al), 0.18 (m, 6H, PtMe), -1.05 (s, 6H, AlMe). ¹³C{¹H} NMR (150.9 MHz, 298K, CD₂Cl₂) δ: 25.11 (d, ¹J_{P-C} 21 Hz, PMe₂), 22.48 (d, ¹J_{P-C} 21 Hz, PMe₂), 21.26 (d, ¹J_{P-C} 36 Hz, PMe₂), 20.45 (d, ¹J_{P-C} 27 Hz, PMe₂), 17.74 (d, ¹J_{P-C} 40 Hz, PMe₂), 14.83 (d, ¹J_{P-C} 34 Hz, PMe₂), -2.69 (d, ¹J_{P-C} 77 Hz, PtMe) (PCH₂Al signals and ¹⁹⁵Pt satellites were not observed in the ¹³C{1H} NMR spectrum due to the low solubility of compound 7). ³¹P{¹H} NMR (242.9 MHz, **298K, CD₂Cl₂) δ:** -10.14 (t, ²J_{P-P},cis 23 Hz, ¹J_{Pt-P} = 1827 Hz), -11.53 (dd, ²J_{P-P},cis 23 Hz, ²J_{P-P},trans 398 Hz, ¹J_{Pt-P} 2354 Hz), -13.59 (dd, ²J_{P-P},cis 23 Hz, ²J_{P-P},trans 398 Hz, ¹J_{Pt-P} 2406 Hz) (³¹P chemical shifts and $^2\!J_{\text{P-P}}$ couplings obtained from simulated data; ¹J_{Pt,P} couplings determined directly from the NMR spectrum). ¹⁹⁵Pt NMR (107.5 MHz, 298K, C₆D₆) δ: -4741.6 (ddd, ${}^{1}J_{Pt-P(a)}$ = 2421 Hz, ${}^{1}J_{Pt-P(b)}$ = 2376 Hz, ${}^{1}J_{Pt-P(c)}$ = 1830 Hz; ${}^{1}J_{Pt,P}$ couplings determined directly from the NMR spectrum; P(a) and P(b) are trans to one another; P(c) is trans to the methyl group).

Reaction of (Me₂PCH₂AlMe₂)₂ with [AuCl(CO)]: A solution of (Me₂PCH₂AlMe₂)₂ (9.3 mg, 0.0352 mmol) in 0.3 mL C₆D₆ was added to AuCl(CO) (18.6 mg, 0.0704 mmol) in 0.3 mL C₆D₆. The solution immediately precipitated a dark blue-black solid, with some gold mirror forming on the walls of the vial. The

18

22

28

precipitate was allowed to settle, and the clear, colorless supernatant was decanted. The black powder was washed three times with hexanes and dried in vacuo. The black solid was shown to consist of elemental gold by PXRD. Slow evaporation of the clear, colorless supernatant yielded colorless crystals, which were characterized as (Me₂PCH₂AlMeCl)₂ by XRD. ¹H NMR (600 MHz, 298K, C₆D₆) δ: 1.03 (d, 3H ²J_{P-H} = 9.2 Hz, PMe^{**}), 0.93 (d, 6H ${}^{2}J_{P-H}$ = 8.6 Hz, PMe^{*}), 0.79 (d, 6H ${}^{2}J_{P-H}$ = 8.8, PMe*), 0.61 (d, 3H ²J_{P-H} = 8.4 Hz, PMe**), 0.20 (m, 1H, CH₂**), 0.04 (m, 4H, CH_2^*), -0.18 (m, 1H, CH_2^{**}), -0.36 (d, 6H, ${}^{3}J_{P-H} = 4.3$ Hz, AlMe*), -0.42 (d, 3H, ${}^{3}J_{P-H}$ = 4.3 Hz, AlMe**). Integrations are taken directly from the ¹H NMR spectrum, so are reflective of the 2:1 ratio ratio of the diastereomers. 13C{1H} NMR (125.8 **MHz, 298K, C₆D₆) δ:** 13.25 (d, ¹*J*_{P-C} = 22.9 Hz, P*Me**), 11.93 (d, ${}^{1}J_{P-C}$ = 23.4, PMe**), 11.77 (d, ${}^{1}J_{P-C}$ = 24.9 Hz, PMe**), 10.49 (d, ${}^{1}J_{P-C}$ = 27.1 Hz, PMe*), 5.1 (CH₂ for both diastereomers; identified from the 2D NMR spectra), -8.5 (AlMe**, identified from the 2D NMR spectra), -8.9 (AlMe*, identified from the 2D NMR spectra). ³¹P{¹H} NMR (202.5 MHz, 298K, C₆D₆) δ: -41.4 (broad). * major diastereomer, ** minor diastereomer

Reaction of (Me₂PCH₂AlMe₂)₂ with [PtCl₂(cod)]: A solution of $(Me_2PCH_2AlMe_2)_2$ (9.1 mg, 0.0344 mmol) in 0.3 mL C₆D₆ was added to PtCl₂(cod) (12.9 mg, 0.0344 mmol) in 0.3 mL C₆D₆. The mixture was monitored by NMR spectroscopy at room temperature over the course of two days.

References

- K. M. Paskaruk, B. E. Cowie and D. J. H. Emslie, in Comprehensive Coordination Chemistry III, ed. E. C. Constable, G. Parkin, L. Que, Jr., Elsevier, 2021, vol. 1, pp. 717.
- 2 G. Bouhadir and D. Bourissou, *Chem. Soc. Rev.*, 2016, **45**, 1065.
- 3 A. Amgoune, G. Bouhadir and D. Bourissou, *Top. Curr. Chem.*, 2013, **334**, 281.
- 4 H. Kameo and H. Nakazawa, *Chemistry-an Asian Journal*, 2013, **8**, 1720.
- 5 J. Bauer, H. Braunschweig and R. D. Dewhurst, *Chem. Rev.*, 2012, **112**, 4329.
- 6 D. L. Grimmett, J. A. Labinger, J. N. Bonfiglio, S. T. Masuo, E. Shearin and J. S. Miller, *J. Am. Chem. Soc.*, 1982, **104**, 6858.
- 7 J. A. Labinger and J. S. Miller, J. Am. Chem. Soc., 1982, **104**, 6856.
- 8 J. A. Labinger, J. N. Bonfiglio, D. L. Grimmett, S. T. Masuo, E. Shearin and J. S. Miller, *Organometallics*, 1983, **2**, 733.
- 9 D. L. Grimmett, J. A. Labinger, J. N. Bonfiglio, S. T. Masuo, E. Shearin and J. S. Miller, *Organometallics*, 1983, **2**, 1325.
- 10 F.-G. Fontaine and D. Zargarian, J. Am. Chem. Soc., 2004, **126**, 8786.
- 11 M. H. Thibault, J. Boudreau, S. Mathiotte, F. Drouin, O. Sigouin, A. Michaud and F.-G. Fontaine, *Organometallics*, 2007, **26**, 3807.
- 12 J. Boudreau and F.-G. Fontaine, *Organometallics*, 2011, **30**, 511.
- M. Devillard, E. Nicolas, C. Appelt, J. Backs, S. Mallet-Ladeira, G. Bouhadir, J. C. Slootweg, W. Uhl and D. Bourissou, *Chem. Commun.*, 2014, **50**, 14805.
- M. Devillard, E. Nicolas, A. W. Ehlers, J. Backs, S. Mallet-Ladeira,
 G. Bouhadir, J. C. Slootweg, W. Uhl and D. Bourissou, *Chem. Eur.* J., 2015, **21**, 74.
- 15 M. Devillard, R. Declercq, E. Nicolas, A. W. Ehlers, J. Backs, N. Saffon-Merceron, G. Bouhadir, J. C. Slootweg, W. Uhl and D. Bourissou, J. Am. Chem. Soc., 2016, **138**, 4917.
- 16 M. Sircoglou, G. Bouhadir, N. Saffon, K. Miqueu and D. Bourissou, Organometallics, 2008, **27**, 1675.

- 17 M. Sircoglou, N. Saffon, K. Miqueu, G. Bouhadir and D. Bourissou, Organometallics, 2013, **32**, 6780.
 - J. Fajardo and J. C. Peters, Inorg. Chem., 2021, 60, 1221.
- 19 Q. H. Lai, M. N. Cosio and O. V. Ozerov, *Chem. Commun.*, 2020, 56, 14845.
- 20 Q. H. Lai, N. Bhuvanesh, J. Zhou and O. V. Ozerov, *Dalton Trans.*, 2021, **50**, 5776.
- 21 B. E. Cowie, F. A. Tsao and D. J. H. Emslie, *Angew. Chem. Int. Ed.*, 2015, **54**, 2165.
 - T. Saito, N. Hara and Y. Nakao, Chem. Lett., 2017, 46, 1247.
- 23 N. Hara, T. Saito, K. Semba, N. Kuriakose, H. Zheng, S. Sakaki and Y. Nakao, J. Am. Chem. Soc., 2018, **140**, 7070.
- 24 K. Semba, I. Fujii and Y. Nakao, *Inorganics*, 2019, **7**.
- 25 I. Fujii, K. Semba, Q. Z. Li, S. Sakaki and Y. Nakao, *J. Am. Chem. Soc.*, 2020, **142**, 11647.
- 26 N. Hara, N. Uemura and Y. Nakao, *Chem. Commun.*, 2021, **57**, 5957.
- 27 R. Seki, N. Hara, T. Saito and Y. Nakao, J. Am. Chem. Soc., 2021, 143, 6388.
 - K. Semba, F. Shimoura and Y. Nakao, Chem. Lett., 2022, 51, 455.
- 29 P. A. Rudd, S. S. Liu, L. Gagliardi, V. G. Young and C. C. Lu, J. Am. Chem. Soc., 2011, 133, 20724.
- 30 P. A. Rudd, N. Planas, E. Bill, L. Gagliardi and C. C. Lu, *Eur. J. Inorg. Chem.*, 2013, 3898.
- 31 R. C. Cammarota and C. C. Lu, J. Am. Chem. Soc., 2015, 137, 12486.
- A. B. Thompson, D. R. Pahis, V. Bernales, L. C. Gallington, C. D.
 Malonzo, T. Webber, S. J. Tereniak, T. C. Wang, S. P. Desai, Z. Y.
 Li, I. S. Kim, L. Gagliardi, R. L. Penn, K. W. Chapman, A. Stein, O. K.
 Farha, J. T. Hupp, A. B. F. Martinson and C. C. Lu, *Chem. Mater.*, 2016, 28, 6753.
- 33 J. T. Moore, N. E. Smith and C. C. Lu, *Dalton Trans.*, 2017, **46**, 5689.
- 34 M. V. Vollmer, J. Xie and C. C. Lu, J. Am. Chem. Soc., 2017, 139, 6570.
- 35 M. V. Vollmer, J. Xie, R. C. Cammarota, V. G. Young, E. Bill, L. Gagliardi and C. C. Lu, *Angew. Chem. Int. Ed.*, 2018, **57**, 7815.
- 36 R. C. Cammarota, J. Xie, S. A. Burgess, M. V. Vollmer, K. D. Vogiatzis, J. Y. Ye, J. C. Linehan, A. M. Appel, C. Hoffmann, X. P. Wang, V. G. Young and C. C. Lu, *Chem. Sci.*, 2019, **10**, 7029.
- 37 M. V. Vollmer, R. C. Cammarota and C. C. Lu, *Eur. J. Inorg. Chem.*, 2019, 2140.
- M. V. Vollmer, J. Y. Ye, J. C. Linehan, B. J. Graziano, A. Preston, E.
 S. Wiedner and C. C. Lu, *Acs Catalysis*, 2020, 10, 2459.
- B. J. Graziano, M. V. Vollmer and C. C. Lu, Angew. Chem. Int. Ed., 2021, 60, 15087.
- 40 M. D. Fryzuk, N. T. McManus, S. J. Rettig and G. S. White, *Angew. Chem. Int. Ed. Engl.*, 1990, **29**, 73.
- 41 M. D. Fryzuk, L. Huang, N. T. McManus, P. Paglia, S. J. Rettig and G. S. White, *Organometallics*, 1992, **11**, 2979.
- 42 O. T. Beachley, M. A. Banks, J. P. Kopasz and R. D. Rogers, Organometallics, 1996, **15**, 5170.
- 43 F. Bessac and G. Frenking, *Inorg. Chem.*, 2006, **45**, 6956.
- 44 S. Dutta, S. M. De, S. Bose, E. Mahal and D. Koley, *Eur. J. Inorg. Chem.*, 2020, 638.
- 45 D. M. C. Ould, J. L. Carden, R. Page and R. L. Melen, *Inorg. Chem.*, 2020, **59**, 14891.
- Several chromium complexes containing an R₂PNR'AIR"₂ unit have been generated in situ, including [Cr(μ-Cl)₂(PPh₂N'BuAIR₂)₂] (R = Me or Et): (a) I. Thapa, S. Gambarotta, I. Korobkov, R. Duchateau, S. V. Kulangara and R. Chevalier, *Organometallics*, 2010, **29**, 4080.; (b) A. Alzamly, S. Gambarotta and I. Korobkov, *Organometallics*, 2014, **33**, 1602.
- 47 H. H. Karsch, A. Appelt, F. H. Kohler and G. Muller, Organometallics, 1985, **4**, 231.

This journal is C The Royal Society of Chemistry 20xx

Journal Name

- B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría,
 E. Cremades, F. Barragán and S. Alvarez, *Dalton Trans.*, 2008, 2832.
- 49 J. C. Thomas and J. C. Peters, *Inorg. Chem.*, 2003, **42**, 5055.
- 50 A. Tamaki and J. K. Kochi, J. Organometal. Chem., 1973, **61**, 441.
- 51 S. Komiya, T. A. Albright, R. Hoffmann and J. K. Kochi, *J. Am. Chem. Soc.*, 1977, **99**, 8440.
- 52 J. Miranda-Pizarro, Z. W. Luo, J. J. Moreno, D. A. Dickie, J. Campos and T. B. Gunnoe, *J. Am. Chem. Soc.*, 2021, **143**, 2509.
- 53 [Me₂PCH₂AlMe₂]₂ has been shown to be an effective initiator for polymerization of Michael-type monomers, likely involving reactivity at the Al-CH₂ linkage: M. Weger, R. K. Grotsch, M. G. Knaus, M. M. Giuman, D. C. Mayer, P. J. Altmann, E. Mossou, B. Dittrich, A. Pothig and B. Rieger, *Angew. Chem. Int. Ed.*, 2019, **58**, 9797.
- 54 H. H. Karsch, A. Appelt and G. Muller, *Organometallics*, 1985, 4, 1624.
- 55 E. Costa, P. G. Pringle and M. Ravetz, *Inorg. Synth.*, 1997, **31**, 284.
- 56 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112.
- 57 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2015, **71**, 3.
- 58 G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, **71**, 3.
- 59 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339.